中国医科大学学报

中国医科大学学报
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
  • BA、CA收录

中国医科大学学报 ›› 2018, Vol. 47 ›› Issue (1): 73-77.doi: 10.12007/j.issn.0258-4646.2018.01.016

• 综述 • 上一篇    下一篇

间充质干细胞外泌体应用于组织再生的研究进展

蒋欢, 刘尧, 陈旭   

  1. 中国医科大学附属口腔医学院儿童口腔科, 辽宁省口腔疾病重点实验室, 沈阳 110002
  • 收稿日期:2017-06-22 出版日期:2018-01-30 发布日期:2017-12-23
  • 通讯作者: 陈旭 E-mail:chenxu_cmu@sina.com
  • 作者简介:蒋欢(1993-),女,硕士研究生.
  • 基金资助:
    国家自然科学基金青年基金项目(81600825);辽宁省自然科学基金(201602842)

Application of Exosomes Derived from Mesenchymal Stem Cells in Tissue Regeneration

JIANG Huan, LIU Yao, CHEN Xu   

  1. Department of Pediatric Dentistry, School of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang 110002, China
  • Received:2017-06-22 Online:2018-01-30 Published:2017-12-23

摘要: 组织再生是指用新生组织替代或修复人体坏死、受损或老化组织。外泌体是真核细胞分泌的一种细胞外膜性微囊泡,作为干细胞旁分泌活动的一种重要方式参与组织再生。外泌体的应用为组织再生提供了一种新策略,本文对间充质干细胞来源的外泌体应用于多种组织再生的研究进展进行综述。

关键词: 间充质干细胞, 外泌体, 组织再生

Abstract: Tissue regeneration involves the use of new tissue to replace or repair necrotic, damaged, or aged tissue. Exosomes, a type of extracellular vesicles secreted by cells, are important for the paracrine activity of stem cells and are involved in tissue regeneration. Recently, tissue regeneration strategies utilizing exosomes have gained considerable research attention. This review discusses the current advances in the application of exosomes derived from mesenchymal stem cells in tissue regeneration.

Key words: mesenchymal stem cells, exosome, tissue regeneration

中图分类号: 

  • R329.2
[1] RAIK S, KUMAR A, BHATTACHARYYA S. Insights into cell free therapeutic approach-role of Stem cell "soup-ernatant"[J]. Biotechnol Appl Biochem, 2017. DOI:10.1002/bab.1561.[Epub ahead of print]
[2] Yu B, Zhang XM, Li XR. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3):4142-4157. DOI:10.3390/ijms15034142.
[3] KATSHA AM, OHKOUCHI S, XIN H, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model[J]. Mol Ther, 2011, 19(1):196-203. DOI:10.1038/mt.2010.192.
[4] CAPLAN AI, DENNIS JE. Mesenchymal stem cells as trophic mediators[J]. J Cell Biochem, 2006, 98(5):1076-1084. DOI:10.1002/jcb.20886.
[5] MERINO-GONZÁLEZ C, ZUÑIGA FA, ESCUDERO C, et al. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis:potencial clinical application[J]. Front Physiol, 2016, 7:24. DOI:10.3389/fphys.2016.00024.
[6] BREAKEFIELD XO, FREDERICKSON RM, SIMPSON RJ. Gesicles:Microvesicle "cookies" for transient information transfer between cells[J]. Mol Ther, 2011, 19(9):1574-1576. DOI:10.1038/mt.2011.169.
[7] MAROTE A, TEIXEIRA FG, MENDESPINHEIRO B, et al. MSCs-derived exosomes:cell-secreted nanovesicles with regenerative potential[J]. Front Pharmacol, 2016, 7:231. DOI:10.3389/fphar.2016.00231.
[8] ZHANG HG, GRIZZLE WE. Exosomes:a novel pathway of local and distant intercellular communication that facilitate the growth and metastasis of neopastic lesion[J]. Am J Pathol, 2014, 184(1):28-41. DOI:10.1016/j.ajpath.2013.09.027.
[9] HA M, KIM VN. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Bio, 2014, 15(8):509-524. DOI:10.1038/nrm3838.
[10] BAGLIO SR, ROOIJERS K, KOPPERS-LALIC D, et al. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species[J]. Stem Cell Res Ther, 2015, 6(1):127. DOI:10.1186/s13287-015-0116-z.
[11] LOPEZ-VERRILLI MA, CAVIEDES A, CABRERA A, et al. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth[J]. Neuroscience, 2016, 320:129-139. DOI:10.1016/j.neuroscience.2016.01.061.
[12] LIANG X, DING Y, ZHANG Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy current status and perspective[J]. Cell Transplant, 2014, 23(9):1045-1059. DOI:10.3727/096368913X667709.
[13] 魏俊吉, 陈云飞, 薛春玲, 等. 间充质干细胞来源的Exosome对神经损伤的保护作用[J]. 中国医学科学院学报, 2016, 38(1):33-36. DOI:10.3881/j.issn.1000-503X.2016.01.006.
[14] ZHANG Y, CHOPP M, MENG Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury[J]. J Neurosurg, 2015, 122(4):856-867. DOI:10.3171/2014.11.JNS14770.
[15] XIN H, LI Y, CUI Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11):1711-1715. D:10.1038/jcbfm.2013.152.
[16] MEAD B, TOMAREV S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4):1273-1285. DOI:10.1002/sctm.16-0428.
[17] KATSUDA T, TSUCHIYA R, KOSAKA N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3:1197. DOI:10.1038/srep01197.
[18] JARMALAVIČIŪTĖ A, TUNAITIS V, PIVORAITĖ U, et al. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis[J]. Cytotherapy, 2015, 17(7):932-939. DOI:10.1016/j.jcyt.2014.07.013.
[19] LAI RC, ARSLAN F, LEE MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4(3):214-222. DOI:10.1016/j.scr.2009.12.003.
[20] ZHANG Z, YANG J, YAN W, et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair[J]. J Am Heart Assoc, 2016, 5(1):e002856. DOI:10.1161/JAHA.115.002856.
[21] BIAN S, ZHANG L, DUAN L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. J Mol Med(Berl), 2014, 92(4):387-397. DOI:10.1007/s00109-013-1110-5.
[22] MA J, ZHAO Y, SUN X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D[J]. Stem Cells Transl Med, 2017, 6(1):51-59. DOI:10.5966/sctm.2016-0038.
[23] BANG C, BATKAI S, DANGWAL S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5):2136-2146. DOI:10.1172/JCI70577.
[24] HULLINGER TG, MONTGOMERY RL, SETO AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury[J]. Circ Res, 2012, 110(1):71-81. DOI:10.1161/CIRCRESAHA.111.244442.
[25] SHAO L, ZHANG Y, LAN B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017, 2017:4150705. DOI:10.1155/2017/4150705.
[26] VAN KOPPEN A, JOLES JA, VAN BALKOM BW, et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease[J]. Plos One, 2012, 7(6):e38746. DOI:10.1371/journal.pone.0038746.
[27] ZHOU Y, XU H, XU W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro[J]. Stem Cell Res Ther, 2013, 4(2):34. DOI:10.1186/scrt194.
[28] LIN KC, YIP HK, SHAO PL, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury[J]. Int J Cardiol, 2016, 216:173-185. DOI:10.1016/j.ijcard.2016.04.061.
[29] LI L, HUANG L, SUNG SS, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury[J]. Kidney Int, 2008, 74(12):1526-1537. DOI:10.1038/ki.2008.500.
[30] SHEN B, LIU J, ZHANG F, et al. CCR2 Positive Exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J]. Stem Cells Int, 2016, 2016:1240301. DOI:10.1155/2016/1240301.
[31] LI T, YAN Y, WANG B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22(6):845-854. DOI:10.1089/scd.2012.0395.
[32] HERRERA MB, FONSATO V, GATTI S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats[J]. J Cell Mol Med, 2010, 14(6B):1605-1618. DOI:10.1111/j.1582-4934.2009.00860.x.
[33] TAN CY, LAI RC, WONG W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5(3):76. DOI:10.1186/scrt465.
[34] NONG K, WANG W, NIU X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats[J]. Cytotherapy, 2016, 18(12):1548-1559. DOI:10.1016/j.jcyt.2016.08.002.
[35] YAN Y, JIANG W, TAN Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury[J]. Mol Ther, 2017, 25(2):465-479. DOI:10.1016/j.ymthe.2016.11.019.
[36] LU Z, CHEN Y, DUNSTAN C, et al. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration[J]. Tissue Eng Part A, 2017. DOI:10.1089/ten.tea.2016.0548.[Epub ahead of print]
[37] FURUTA T, MIYAKI S, ISHITOBI H, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model[J]. Stem Cells Transl Med, 2016, 5(12):1620-1630. DOI:10.5966/sctm.2015-0285.
[38] ZHANG J, LIU X, LI H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Res Ther, 2016, 7(1):136. DOI:10.1186/s13287-016-0391-3.
[39] ZHANG S, CHU WC, LAI RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis Cartilage, 2016, 24(12):2135-2140. DOI:10.1016/j.joca.2016.06.022.
[40] ZHANG S, CHU W, LAI R, et al. 21-Human mesenchymal stem cell-derived exosomes promote orderly cartilage regeneration in an immunocompetent rat osteochondral defect model[J]. Cytotherapy, 2016, 18(6):S13. DOI:org/10.1016/j.jcyt.2016.03.035
[41] NAKAMURA Y, MIYAKI S, ISHITOBI H, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration[J]. FEBS Lett, 2015, 589(11):1257-1265. DOI:10.1016/j.febslet.2015.03.031.
[42] 包志凡, 陈旭. 年轻恒牙牙髓血管再生治疗[J]. 中国实用口腔科杂志, 2015, 8(9):522-526. DOI:10.7504/kq.2015.09.003.
[43] 张宇,郭皓,何小宁,等. 脱落乳牙牙髓干细胞聚合体用于牙髓再生的实验研究[J]. 中国实用口腔科杂志, 2016, 9(12):719-724. DOI:10.7504/kq.2016.12.004.
[44] RAVINDRAN S, GEORGE A. Multifunctional ECM proteins in bone and teeth[J]. Exp Cell Res, 2014, 325(2):148-54. DOI:10.1016/j.yexcr.2014.01.018.
[45] HUANG CC, NARAYANAN R, ALAPATI S, et al. Exosomes as biomimetic tools for stem cell differentiation:applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111:103-115. DOI:10.1016/j.biomaterials.2016.09.029.
[46] HU L, WANG J, ZHOU X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6:32993. DOI:10.1038/srep32993.
[1] 赵芳英, 高秀秋, 刘姊凤. Wnt3a对人骨髓间充质干细胞成骨分化的影响及机制研究[J]. 中国医科大学学报, 2018, 47(7): 617-621.
[2] 骆雪, 李文晶, 李天舒, 王蔚. 人羊膜间充质干细胞旁分泌与自分泌作用的研究进展[J]. 中国医科大学学报, 2018, 47(7): 641-645.
[3] 李羽思, 陈旭. 外泌体调控受体细胞DNA甲基化的研究进展[J]. 中国医科大学学报, 2018, 47(12): 1133-1136.
[4] 李维, 杨园园, 姜红. 间充质干细胞对慢性间质性肾炎大鼠肾小管上皮细胞表型的影响[J]. 中国医科大学学报, 2018, 47(11): 989-992.
[5] 余思, 刘尧, 陈旭. 间充质干细胞外泌体免疫调节作用及其机制的研究进展[J]. 中国医科大学学报, 2018, 47(10): 939-941,947.
[6] 孙师,万峪岑,赵利娜,尹艳梅,陆宇,冯智萍,周禹鑫,张志强,张立新. 骨髓间充质干细胞联合超短波对大鼠脊髓损伤后早期GFAP 和 ED-1 的影响[J]. 中国医科大学学报, 2016, 45(8): 678-683.
[7] 杜莉莉,吕润潇,杨晓漪,辛娜,马廷贤. 胎盘间充质干细胞低氧培养液对肠黏膜上皮细胞氧化应激损伤的保护作用[J]. 中国医科大学学报, 2016, 45(2): 131-135.
[8] 唐涛 ,,张继虹 ,孙先润 ,李治 ,王波 ,刘颖 ,李亚国 ,肖壮 ,李连娥 ,李晓云. 绿色荧光蛋白滑膜间充质干细胞抑制大鼠骨关节炎的实验研究[J]. 中国医科大学学报, 2016, 45(10): 913-917.
[9] 李宏图,林学文,李彩虹,庞希宁. 负向调节因子重编程诱导大鼠骨髓间充质干细胞向胰岛内分泌细胞分化的研究[J]. 中国医科大学学报, 2016, 45(1): 1-6.
[10] 王哲,刘晓玉,张殿宝,王喜良,林学文,王秋实. 普罗布考对高糖诱导的脂肪间充质干细胞损伤的保护作用[J]. 中国医科大学学报, 2014, 43(7): 615-620.
[11] 于海生,王宁. 低强度脉冲超声促进不同接种密度骨髓间充质干细胞增殖的实验研究[J]. 中国医科大学学报, 2014, 43(4): 355-358.
[12] 边晓慧,赵桂锋,孙立,刘娜,李德天,冯江敏. 骨髓间充质干细胞延缓大鼠残肾模型肾纤维化的研究[J]. 中国医科大学学报, 2014, 43(2): 131-135.
[13] 史丽,赵喜娃,尹洁,李青梅,董晓静. sCD40L诱导人脐静脉内皮细胞损伤对人脐间充质干细胞趋化性的影响[J]. 中国医科大学学报, 2013, 42(8): 710-713.
[14] 李少一,高芸,刘宏宇,郭文昌,王国栋,李晓东,马维宁,刘云会. 应用导入HSVtk基因的骨髓间充质干细胞治疗胶质瘤的实验研究[J]. 中国医科大学学报, 2013, 42(11): 961-964.
[15] 胡宜,程鹏,薛一雪,刘云会. 骨髓间充质干细胞向人胶质瘤迁移的分子机制初探[J]. 中国医科大学学报, 2013, 42(11): 965-969.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!

中国医科大学学报版权所有©2018

未经允许,严禁擅自转载本站图文资料

地址:中国 沈阳市沈北新区蒲河路77号 110122

辽ICP备05014850

JOURNAL OF CHINA MEDICAL UNIVERSITY

ADDRESS: NO.77 PUHE ROAD

SHENYANG NORTH NEW AREA, SHENYANG

LIAONING PROVINCE, P.R. CHINA